
REVIEW

Defining the underlying defect in insulin action in type 2 diabetes
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Abstract
Insulin resistance is one of the earliest defects in the pathogenesis of type 2 diabetes. Over the past 50 years, elucidation of the insulin
signalling network has provided important mechanistic insights into the abnormalities of glucose, lipid and protein metabolism that
underlie insulin resistance. In classical target tissues (liver, muscle and adipose tissue), insulin binding to its receptor initiates a broad
signalling cascade mediated by changes in phosphorylation, gene expression and vesicular trafficking that result in increased nutrient
utilisation and storage, and suppression of catabolic processes. Insulin receptors are also expressed in non-classical targets, such as the brain
and endothelial cells, where it helps regulate appetite, energy expenditure, reproductive hormones, mood/behaviour and vascular function.
Recent progress in cell biology and unbiasedmolecular profiling bymass spectrometry andDNA/RNA-sequencing has provided a unique
opportunity to dissect the determinants of insulin resistance in type 2 diabetes and the metabolic syndrome; best studied are extrinsic
factors, such as circulating lipids, amino acids and other metabolites and exosomal microRNAs. More challenging has been defining the
cell-intrinsic factors programmed by genetics and epigenetics that underlie insulin resistance. In this regard, studies using human induced
pluripotent stem cells and tissues point to cell-autonomous alterations in signalling super-networks, involving changes in phosphorylation
and gene expression both inside and outside the canonical insulin signalling pathway. Understanding how these multi-layered molecular
networksmodulate insulin action andmetabolism in different tissues will open new avenues for therapy and prevention of type 2 diabetes
and its associated pathologies.
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Introduction

The ground-breaking discovery of insulin 100 years ago [1] turned
diabetes from a death sentence into a manageable condition.
However, it soon became clear that most individuals with diabetes
are not insulin deficient, but rather have increased insulin levels
and are resistant to exogenous insulin [2]. Major breakthroughs in
understanding insulin action and insulin resistance came in the
early 1970s, with the demonstration of the existence of insulin
receptors on the membrane of cells [3] and the subsequent recog-
nition of their intrinsic tyrosine kinase activity [4]. Here, we review
current and evolving concepts of themechanisms of insulin signal-
ling and how these are modified by extrinsic and intrinsic factors
that underlie insulin resistance in type 2 diabetes.

Defining the insulin signalling network

Although key components involved in insulin signal trans-
duction are present in virtually every cell, the biological
outcomes following activation or disruption of this pathway
are highly dependent on the cell type and physiological
context (Fig. 1). In skeletalmuscle, insulin promotes glucose
transport and utilisation, stimulates glycogen synthesis and
inhibits protein catabolism (Fig. 1a). In adipose tissue, insu-
lin promotes glucose transport and lipogenesis and inhibits
lipolysis (Fig. 1b). In liver, insulin action inhibits glucose
production and fatty acid oxidation and stimulates glycogen
synthesis and lipogenesis (Fig. 1c). In addition to these direct
cellular effects, insulin can also regulate metabolism indi-
rectly. For example, insulin suppression of lipolysis in fat
and inhibition of protein catabolism in muscle reduces
substrate supply for gluconeogenesis in the liver [5, 6]. In
states of insulin resistance, all or only some of these path-
ways may be altered, with the exact combination leading to
differing clinical presentations.

Insulin and IGF-1 receptors Insulin and IGF-1 regulate growth
and metabolism through binding to their cognate receptors on
the cell surface. The insulin receptor and IGF-1 receptor
(IGF1R) are highly homologous heterodimers composed of
two α and two β subunits stabilised by disulfide bonds.
These subunits are derived from single-chain proreceptors
(encoded by the INSR and IGF1R genes), which are processed
to the mature α2β2 receptor tetramer. The α subunits are
completely extracellular and create the insulin binding sites
through their three-dimensional inverted-V structure, while
the transmembraneβ subunits contain an intracellular tyrosine
kinase domain that is required for catalytic activity and signal
transduction [4, 7]. Alternative splicing of exon 11 in the INSR
mRNA results in a shorter insulin receptor isoform (insulin
receptor isoformA [IR-A]), which is predominantly expressed
in neurons and less-differentiated cellular progenitors, and a

longer isoform (insulin receptor isoform B [IR-B]), which is
predominant in mature cells and tissues with prominent roles
in glucose, lipid and protein metabolism. Both IR-A and IR-B
display similar affinity for insulin, while IR-A has higher
affinity for IGF-1 and IGF-2 than IR-B [8].

Functionally, the insulin receptor and IGF1R are members
of the family of receptor tyrosine kinases. Despite their high
degree of homology and many shared downstream signalling
pathways, activation of each receptor results in different phys-
iological outcomes, with the insulin receptor primarily regu-
lating metabolic functions and IGF1R being more involved in
mitogenesis and growth. Some of these functional differences
are explained by distinct cellular distribution but, even in the
same cell type, these receptors exert differential effects.
Studies have demonstrated that these receptor-specific effects
depend on differences in both the extracellular and intracellu-
lar domains of these receptors and their relative affinity for
different intracellular substrates, with the insulin receptor
favouring phosphorylation of IRS proteins and IGF1R
favouring phosphorylation of src homology 2 (SH2) domain
containing transforming protein (SHC) [9, 10].

Studies using x-ray crystallography and cryo-electron
microscopy have shown that insulin/IGF-1 binding to the
extracellular domains of the insulin receptor/IGF1R involves
both the N- and C-terminal regions of the α-subunit, leading
to conformational changes that bring together the intracellular
β-subunit within each receptor [11, 12]. This leads to activa-
tion of the intrinsic tyrosine kinase, resulting in
transphosphorylation of the β-subunits and phosphorylation
of multiple tyrosine residues within the receptors themselves
and their immediate substrates.

�Fig. 1 Insulin signalling in classical tissues. Insulin binding to the insulin
receptor leads to activation of intrinsic tyrosine kinase activity and
multisite insulin receptor and IRS phosphorylation. Tyrosine-
phosphorylated IRS serves as docking sites for PI3K leading to PIP3
formation and PDK-dependent Akt activation, which in turn promotes
nutrient utilisation, storage and other anabolic processes, and
concomitantly suppresses catabolic pathways in (a) skeletal muscle, (b)
adipose tissue and (c) liver. aPKC, atypical PKC; ATGL, adipose
triglyceride lipase; CAP, Cbl-associated protein; CBL, Cbl proto-
oncogene; ChREBP, carbohydrate-responsive element binding protein;
CREB, cAMP responsive element binding protein; CRTC2, CREB-
regulated transcription coactivator 2; FATP, long-chain fatty acid
transport protein; G3P, glyceraldehyde 3-phosphate; G6Pase, glucose-
6-phosphatase; GRB2, growth factor receptor bound protein 2; GS,
glycogen synthase; HSL, hormone-sensitive lipase; MAPK, mitogen-
activated protein kinases; MEK, MAPK kinase; OXPHOS, oxidative
phosphorylation; PDE3B, phosphodiesterase 3B; PHK, phosphorylase
kinase; PKA, protein kinase A; RAC1, RAC family small GTPase 1;
RAF, RAF proto-oncogene serine/threonine kinase; Ras, Ras GTPase;
SHC, SH2 domain containing transforming protein; S6K, p70
ribosomal S6 kinase; SOS, son of sevenless homolog; TBC1D1, TBC1
domain family member 1; TC10, Rho-related GTP binding protein
RhoQ; TCA, tricarboxylic acid; TSC2, tuberous sclerosis 2. This figure
is available as part of a downloadable slideset
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Insulin receptor substrates For metabolic action, the two most
important substrates are IRS1 and IRS2. Structurally, IRS
proteins are defined by phosphotyrosine binding (PTB) and
pleckstrin-homology domains located in the N-terminal
region, which are required for their interaction with phosphor-
ylated insulin receptor and targeting to the plasma membrane,
and by multiple tyrosine residues in the mid- and C-terminal
regions, which are phosphorylated by activated insulin recep-
tor and serve as docking sites for proteins containing SH2
domains [13]. Genetic ablation in mice has shown a predom-
inant role of IRS1 in insulin signalling in skeletal muscle and
adipose tissue [14, 15] and IRS2 in liver, pancreatic beta cells
and neurons [16]. Consistent with their complementary roles,
MS-based phosphoproteomic studies of IRS1 and IRS2
knockout in pre-adipocytes have revealed regulation of
distinct signalling pathways downstream of each substrate
and suggest that IRS1/2 do not fully compensate for each
other [17].

In addition to signalling through canonical substrates and
downstream elements, the insulin receptor and its signalling
are also regulated, both positively and negatively, by interac-
tion with membrane and intracellular proteins. These include
glycosylphosphatidylinositol (GPI)-linked proteins, such as
glypican-4 [18], membrane pyrophosphatases and phosphodi-
esterases, such as ectonucleotide pyrophosphatase/
phosphodiesterase 1 (PC-1) [19], α-arrestin adaptors [20]
and, even, transcription factors [21] and cell-cycle regulators
[22].

Downstream insulin signalling The critical step linking insulin
receptor activation to downstream metabolic functions of
insulin is the binding of class IA phosphoinositide 3-kinase
(PI3K) to tyrosine-phosphorylated IRS proteins, leading to the
formation of phosphatidylinositol (3,4,5)-triphosphate (PIP3).
Downstream effects of PIP3 lead to activation of 3-
phosphoinositide dependent protein kinase (PDK)1 and
subsequent activation of a variety of kinases, of which
Akt1–3 are the best studied, but which also include p70 ribo-
somal S6 kinase (S6K), serum- and glucocorticoid-induced
protein kinase (SGK) and protein kinase C (PKC) isoforms
[23].

PI3K is a lipid kinase consisting of a catalytic subunit
(either p110α, p110β or p110δ encoded by the PIK3CA,
PIK3CB and PIK3CD genes, respectively) and a regulatory
subunit (either p85α [and its splice variants p55α and p50α],
p85β or p55γ encoded by PIK3R1, PIK3R2 and PIK3R3
genes, respectively) [24]. The binding of SH2 domains in
the regulatory subunits to phosphotyrosines on IRS proteins
reduces the constitutive inhibitory effects exerted on the cata-
lytic subunits, leading to increased kinase activity towards
phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasma
membrane, resulting in PIP3 formation. PIP3 then serves as a
docking site for proteins containing pleckstrin-homology

domains, including Akt, PDK1 and the mechanistic target of
rapamycin complex (mTORC) 2 component mitogen-
activated protein kinase associated protein 1 (SIN1), which
represent critical steps in downstream signalling. Thus, Akt
undergoes PDK1-dependent phosphorylation at T308 within
the kinase domain and mTORC2-dependent phosphorylation
at S473 in a C-terminal hydrophobic motif, resulting in full
kinase activation [25]. In addition to mTORC2, the Akt S473
residue is phosphorylated by DNA-dependent protein kinase
(DNA-PK) [26].

A wide range of insulin’s metabolic actions are linked to
Akt-dependent phosphorylation: Akt-induced phosphoryla-
tion inactivates glycogen synthase kinase-3 (GSK3)α/β,
allowing dephosphorylation and activation of glycogen
synthase, which increases glycogen synthesis [27]; phos-
phorylation of forkhead box (FOX)O transcription factors
results in their nuclear exclusion, thus, inhibiting their effect
on the expression of gluconeogenic genes in the liver [28,
29] and autophagy genes in muscle [30]; phosphorylation of
tuberous sclerosis 2 (TSC2) and the 40 kDa proline-rich Akt
substrate (PRAS40) leads to activation of mTORC1,
resulting in stimulation of protein synthesis and suppression
of autophagy [31, 32]; phosphorylation of TBC1 domain
family member 1/Akt substrate of 160 kDa (TBC1D4/
AS160) regulates trafficking of intracellular GLUT4 vesi-
cles to the plasma membrane and increases glucose uptake
[33, 34]. In addition, PI3K/Akt signalling plays a role in cell
survival, proliferation and cytoskeleton organisation. While
some of these actions occur through phosphorylation of
targets, such as GSK3, FOXO1 and mTORC1, Akt also
directly phosphorylates proteins in the apoptotic pathway
(B cell lymphoma 2 [BCL2]-associated agonist of cell death
[BAD], X-linked inhibitor of apoptosis [XIAP] and BCL2-
interacting mediator of cell death [BIM]) and regulates cell
division through phosphorylation of cyclin-dependent
kinase 2 (CDK2) and the cell cycle arrest protein cyclin-
dependent kinase inhibitor 1B (p27) [25].

Regulation of gene expression The pleiotropic effects of insu-
lin action on cell growth and metabolism result from a
complex interaction between rapid phosphorylation-
dependent signalling [35, 36] and slower changes in gene
expression [37]. For example, the effect of insulin on glucose
transport in skeletal muscle and adipocytes is dependent on
the movement of pre-existing vesicles containing GLUT4
glucose transporters to the plasma membrane [38] and is
dependent on AS160 phosphorylation by Akt [39], while
glycogen synthesis and glycolytic and oxidative glucose
metabolism are supported by increased mRNA expression of
glycogen synthase 1 [40], hexokinase 2 [41] and many
components of the mitochondrial electron transport chain
[42]. Insulin also regulates several key mechanisms involved
in gene expression, with the regulation of mRNA transcription
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being the best studied [43]. This important aspect of insulin
action is accomplished by insulin-induced changes in phos-
phorylation, expression, processing and translocation of a
variety of transcription factors, leading to stimulation or inhi-
bition of gene transcription.

FOX proteins represent a large family of transcription
factors, of which FOXOs (FOXO1, FOXO3, FOXO4 and
FOXO6) are the most well-characterised regulators of down-
stream insulin signalling. Here, the effect of insulin is one of
negative regulation (Fig. 2a). Upon insulin stimulation,
FOXOs undergo multisite phosphorylation by Akt and/or
SGK kinase. This creates interaction sites for FOXOs with
phosphoserine-binding 14-3-3 proteins, resulting in their
retention in the cytoplasm and decreased transcriptional activ-
ity in the nucleus [44, 45]. Thus, insulin-induced phosphory-
lation of FOXOs results in reduced hepatic gluconeogenesis
[46], inhibition of muscle autophagy and protein degradation
[30, 47] and regulation of adipocyte differentiation [48].
Because of the negative nature of insulin action on FOXO-
regulated gene expression, FOXO deletion can reverse many
of the metabolic abnormalities caused by insulin resistance

resulting from deletion of the insulin receptor/IGF1R [30,
49] or deletion of Akt1/Akt2 [50] or those caused by
streptozotocin-induced diabetes [51].

Another emerging class of FOX proteins that act in insulin
signalling are the FOXK1 and FOXK2 transcription factors
[21, 52]. In contrast to FOXOs, which are turned off by insu-
lin, FOXKs display increased nuclear localisation and tran-
scriptional activity following insulin stimulation (Fig. 2a)
and exhibit complex regulation. In the basal state, GSK3
phosphorylates FOXKs leading to increased interaction with
14-3-3 proteins and nuclear exclusion (Fig. 2b); this is
reversed by insulin-induced Akt and mTORC1 activation
[21, 52]. In hepatocytes, FOXKs regulate genes involved in
the cell cycle, apoptosis and lipid metabolism [21], while in
adipocytes and muscle, FOXKs promote glucose transport
and lactate production by stimulation of glycolytic metabo-
lism and inhibition of mitochondrial pyruvate oxidation [53].

In addition to phosphorylation, insulin also regulates the
expression and processing of transcription factors. For exam-
ple, sterol regulatory element binding proteins (SREBP) 1 and
2 are important regulators of triacylglycerol and cholesterol
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Fig. 2 Reciprocal regulation of FOX transcription factors by insulin. (a)
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14-3-3 proteins, leading to cytoplasmic retention and inhibited transcrip-
tional activity. Under these conditions, increased Akt and mTORC1
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complexes in the nucleus (dotted line). (b) Under fasting or other condi-
tions of insulin deficiency or insulin resistance, low activity of PI3K/Akt/

mTORC1 pathways results in FOXO hypophosphorylation leading to
increased nuclear localisation and transcriptional activity. Under these
conditions, increased GSK3 activity leads to increased FOXK phosphor-
ylation and interaction with phosphoserine-binding 14-3-3 proteins,
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Line thickness indicates strength of signalling activity, with thicker lines
indicating stronger signalling activity. Faded shading of text boxes indi-
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each state, and arrows between the nucleus and cytoplasm indicate the
direction of translocation. This figure is available as part of a
downloadable slideset
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synthesis and are synthesised as precursors that reside in the
endoplasmic reticulum (ER). Upon activation of Akt/mTOR
pathways by insulin, these are transported to the Golgi appa-
ratus where membrane-bound transcription factor protease,
site 1/2 (SP1/SP2) mediate proteolytic cleavage, releasing
the active forms of SREBP1/2, which then migrate into the
nucleus and regulate the transcription of genes involved in
lipid synthesis and transport [54].

A re-emerging concept in insulin control of gene expres-
sion is the possibility of direct effects of the insulin receptor
itself. Studies from over 40 years ago showed binding of insu-
lin to nuclear preparations [55]. The significance of such find-
ings has only come to light by recent studies demonstrating
interactions between the insulin receptor and FOXK1 [21] and
interactions of the insulin receptor with RNA polymerase II
(Pol II) on DNA in the nucleus [56]. Indeed, chromatin immu-
noprecipitation followed by sequencing (ChIP-seq) analysis
of HepG2 hepatocytes revealed ~4000 peaks bound by the
insulin receptor, many overlapping with Pol II sites on
promoters. These occur in genes involved in a variety of cellu-
lar functions including lipid metabolism, translation and
immunity, as well as genes involved in pathophysiological
states, such as diabetes.

Insulin resistance as a central component
of type 2 diabetes and the metabolic
syndrome

Type 2 diabetes affects more than 400 million adults world-
wide and its prevalence continues to increase at epidemic
rates, thus posing one of the greatest public health challenges
to society [57]. This is the result of both genetic and environ-
mental factors.While it remains debated whether insulin resis-
tance and relative beta cell failure constitute the primary defect
in type 2 diabetes [58, 59], a 25 year prospective longitudinal
study of people at high genetic risk of developing type 2
diabetes has demonstrated that insulin resistance precedes
and predicts disease development [60]. Likewise, family stud-
ies have shown that glucose tolerant offspring of parents with
type 2 diabetes show insulin resistance, while loss of first-
phase insulin secretion was observed in those that developed
impaired glucose tolerance [61]. Clamp andMRI studies have
revealed skeletal muscle as a primary site of insulin resistance
in the offspring of parents with type 2 diabetes, with the
muscle of these individuals exhibiting reduced glucose uptake
and reduced glycogen synthesis before hyperglycaemia
develops [62]. This impaired glucose metabolism has been
attributed to a number of defects, including decreased glucose
transport [63], lower rates of insulin-induced ATP production
[42] and reduced expression of genes involved in mitochon-
drial function [64, 65]. The major question that remains is
what are the fundamental defects leading to insulin resistance

and how do cell-intrinsic vs cell-extrinsic factors contribute to
these defects? Cell-extrinsic factors include circulating or
paracrine molecules (such as hormones, cytokines, lipids
and metabolites) that are released from a cell or tissue other
than the target cell/tissue, or absorbed by the intestine from the
diet or microbiome action. Conversely, cell-intrinsic factors
are those that persist after removal or normalisation of all
extrinsic factors. These are most likely due to genetic or epige-
netic effects, but may or may not be in the insulin signalling
pathway itself. For example, a genetic defect that changes
intracellular ATP or Mg2+ concentrations or membrane fluid-
ity could affect insulin receptor- or kinase-mediated signal-
ling, creating a state of insulin resistance. How each of these
might contribute to insulin resistance in type 2 diabetes is
discussed in the following sections.

Extrinsic factors in the pathogenesis of insulin
resistance

In type 2 diabetes, most attention has focused on extrinsic
factors contributing to insulin resistance, including the role
of adipose tissue, circulating metabolites, inflammatory
signals and the gut microbiome [66–68] (Fig. 3). In states of
overnutrition, increased levels of circulating fatty acids and
ectopic lipid accumulation in muscle and liver contribute to
insulin resistance through the release of intermediate metabo-
lites, such as diacylglycerols (DAG) and ceramides, that acti-
vate members of the novel PKC family (PKC δ, ε, θ), leading
to increased Ser/Thr phosphorylation of the insulin receptor
and IRS proteins and resulting in reduced tyrosine phosphor-
ylation [69–73].While IRS1 is the best studied substrate in the
context of insulin resistance, Ser/Thr phosphorylation also
impairs IRS2 signalling [74]. In addition, fatty acids activate
Toll-like receptor 4 (TLR4) to promote activation of c-Jun N-
terminal kinase (JNK) and inhibitor of κB kinase (IKK),
which also increase Ser/Thr phosphorylation of IRS1, thus,
reducing insulin action [75, 76]. Accumulation of ceramides
can also activate protein phosphatase 2A (PP2A) and PKCζ,
inhibiting Akt2. Adipose tissue expansion is also associated
with increased adipose tissue inflammation and hypoxia [77],
promoting recruitment of proinflammatory macrophages [78]
that secrete cytokines, such as TNF-α and IL-6, which further
worsen insulin resistance by activation of the TNF-α receptor
(TNFR) and other cytokine receptors [79]. Cytokine signal-
ling induces expression of suppressor of cytokine signalling
(SOCS) proteins, such as SOCS1 and SOCS3, which directly
bind to the insulin receptor via SH2 domains and prevent
IRS1/2 tyrosine phosphorylation, as well as promoting their
ubiquitination and proteasomal degradation [80]. Finally,
increases in reactive oxygen species (ROS) and ER stress also
occur in target tissues in states of insulin resistance, leading to
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activation of JNK, IKK isoforms and other Ser/Thr kinases
[81, 82].

Circulating branched-chain amino acids (BCAAs) and
aromatic amino acids (isoleucine, leucine, valine, phenylala-
nine and tyrosine) are also associated with insulin resistance
[67], and lowering BCAA levels can improve insulin sensitiv-
ity, at least in mice [83]. It is suggested that BCAAs exert
these effects by activation of mTORC1, again altering Ser/
Thr IRS1/2 phosphorylation [84]. Gut microbiota may also
play a role in regulating BCAA supply, as well as the produc-
tion of short-chain fatty acids and other metabolites, which, in
turn, have an impact on systemic insulin sensitivity [85].
Thus, there are multiple potential extracellular mediators of
insulin resistance, which appear to act through increasing
IRS1/2 Ser/Thr phosphorylation.

Understanding how changes in Ser/Thr phosphorylation of
IRS proteins regulate insulin signalling is, however, challeng-
ing because there are over 50 Ser/Thr sites on IRS1/2 and
many kinases can be involved [86]. In any case, these extrin-
sic factors appear to act primarily as ‘progression
factors’ in disease pathogenesis since none of these
kinases has been linked genetically to human type 2
diabetes (although PKCδ has been linked to insulin
resistance in mice [87]). Since insulin itself regulates
many of these same Ser/Thr phosphorylation sites with
both positive and negative effects, depending on dose
and duration of stimulation, it is possible that IRS1/2
Ser/Thr phosphorylation is a normal feedback mecha-
nism that is subsumed by these metabolic stresses to
inhibit insulin signalling. Recently, we and others have
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shown that adipose tissue can also crosstalk with other
tissues through secretion of exosomal microRNAs
(miRNAs) [88, 89]; however, how this fits in the regu-
lation of insulin sensitivity at a signalling level remains
to be determined.

Intrinsic factors and cell-autonomous insulin
resistance

In vitro approaches, where cells are cultured under controlled
conditions, provides an opportunity to minimise the influence
of extrinsic factors and isolate cell-autonomous determinants
of insulin resistance, which are more closely linked to the
genetic and epigenetic alterations underlying type 2 diabetes.
Skeletal muscle biopsies and primary cultured myoblasts
derived from people with type 2 diabetes show insulin resis-
tance and several metabolic defects. These include impaired
insulin signalling at the level of IRS1-associated PI3K activity
[90] and Akt/GSK3 phosphorylation [91, 92] and decreased
glucose uptake and glycogen synthesis rates [93, 94].
However, primary cell models have limited usefulness for
the definition of molecular mechanisms underlying insulin
resistance due to limits in expandability and ability for screen-
ing using RNA interference (RNAi), chemical genetics or
CRISPR. Induced pluripotent stem cells (iPSCs) represent a step
forward in this direction since these cells have unlimited potential
for expansion and differentiation into multiple lineages, allowing
cells from patients to be used for mechanistic studies, large-scale
‘omics’ and gene-editing approaches. Such iPSC modelling has
been applied to severe insulin resistance caused by insulin recep-
tor mutations [95–97] and other forms of genetically determined
type 2 diabetes and obesity [98, 99].

Recently, we have applied the iPSC technology to study
signalling defects that underlie skeletal muscle insulin resis-
tance in type 2 diabetes [100]. Importantly, iPSC-derived
myoblasts (iMyos) from individuals with type 2 diabetes show
defects in insulin signalling at the level of Akt/GSK3/FOXO1
phosphorylation and decreased insulin-stimulated glucose
uptake and mitochondrial respiration, similar to the defects
observed in the muscle in type 2 diabetes. Global
phosphoproteomics using LC-MS/MS revealed that these
defects are part of a large multi-dimensional network of
signalling changes involving ~1200 Ser/Thr phosphorylation
sites on 725 proteins. Only a small proportion of these abnor-
malities are in classical insulin-regulated phosphorylations
that define critical nodes in insulin action [101]. More impor-
tantly, type 2 diabetic iMyos show a large degree of perturba-
tions in pathways outside of the canonical insulin signalling
pathway and not regulated by insulin (Fig. 4). These include
up- and downregulation of phosphorylation on several Rho
GTPases, proteins involved in cytoskeleton remodelling and
vesicle trafficking, and many nuclear proteins involved in

gene transcription, mRNA splicing and/or processing and
chromatin remodelling. These findings clearly open our view
to a wider definition of mechanisms of insulin resistance at the
molecular and cellular level that needs to be taken into account
in understanding the pathogenesis of type 2 diabetes.

A major challenge going forward will be to identify the
molecular defect(s) that drive these signalling changes.
Possibilities include kinases and phosphatases, a wide range
of co-regulators of the activity of kinases and phosphatases,
redox balance, ionic milieu, scaffolding proteins and other
factors. While these alterations could represent some form of
metabolic memory or epigenetic regulation due to altered
DNAmethylation [102, 103], this seems unlikely since genet-
ic reprogramming of iPSCs is known to erase most epigenetic
marks [104]. Likewise, while genome-wide association stud-
ies (GWAS) have collectively identified over 500 independent
SNPs associated with type 2 diabetes [105], few of these are in
proteins active in insulin signalling. Furthermore, although
some SNPs may fall into regulatory regions acting on adjacent
or even distant genes, most of these GWAS variants occur in
non-coding regions of the genome [106, 107]. While there has
been some progress in linking GWAS variants to alterations in
beta cell function, insulin sensitivity and energy balance [108,
109], even taken together, all GWAS loci account for only a
small fraction of the strong familial clustering of type 2 diabe-
tes, leaving understanding the primary defect a major
challenge.

Advances in profiling technologies have led to a greater
appreciation of the potential role of non-coding RNAs, espe-
cially miRNAs and long non-coding RNAs (lncRNAs), in the
control of cellular metabolism. Indeed, studies using in vitro
models, as well as tissues from rodent models of and humans
with obesity and type 2 diabetes, have revealed a network of
altered miRNAs targeting the insulin receptor, as well as the
IRS/PI3K/Akt pathways, thus, contributing to metabolic
abnormalities [110]. For example, miR-29a and miR-29c are
elevated in skeletal muscle of individuals with type 2 diabetes
and ob/obmice, and ectopic expression of miR-29a and miR-
29c in muscle cells is sufficient to cause insulin resistance and
impaired glucose transport [111]. While some miRNA chang-
es in type 2 diabetes may result from tissue crosstalk through
exosomal delivery [112], miRNA profiling of cultured
myoblasts from donors with type 2 diabetes also revealed
some modest, but significant, changes compared with control
donors [113]. Similar to miRNAs, some lncRNAs are also
regulated by insulin and other physiological cues [37, 114],
and are dysregulated in type 2 diabetes [115], resulting in
abnormal insulin signalling [116]. The finding of altered phos-
phorylation and gene expression of factors involved inmRNA
splicing in iMyos [100] and skeletal muscle biopsies from
individuals with type 2 diabetes [117] could provide another
link between genetic regulation and the insulin resistance of
type 2 diabetes.
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Conclusions and perspectives

Insulin and IGF-1 signalling is present in virtually every cell
of the body and plays a central role in the control of

metabolism, growth and differentiation. In spite of significant
progress, understanding the primary driver of altered insulin
receptor signalling in type 2 diabetes, obesity and the meta-
bolic syndrome represents a continuing challenge. Integrating
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multiple ‘omics’ layers into a unique disease signature and
translating these findings into novel and personalised thera-
pies is an important challenge for the next decade.
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